Abstract

Spasticity is a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes [1], commonly seen in many neurological disorders. Clinically, spasticity is measured by an examiner rotating a joint and simultaneously estimating the resistance according to an ordinal scale. However, the limited reliability of the measurement and the impossibility to discriminate between the underlying neural (stretch reflex) and non-neural (i.e. muscle mechanics) contributions have been the motivation to develop methods describing resistance joint torque quantitatively. The aim of this preliminary study is to develop a forward neuromusculoskeletal model consisting of the explicit musculotendon, muscle spindle, and motoneuron pool, which can simulate the passive isokinetic ankle dorsiflexion test of spasticity.

Highlights

  • Spasticity is a motor disorder characterized by a velocitydependent increase in tonic stretch reflexes [1], commonly seen in many neurological disorders

  • The musculoskeletal geometry was based on the anthropometrical data from a healthy female

  • Activation dynamics were modeled as a first order differential equation

Read more

Summary

Introduction

Spasticity is a motor disorder characterized by a velocitydependent increase in tonic stretch reflexes [1], commonly seen in many neurological disorders. Spasticity is measured by an examiner rotating a joint and simultaneously estimating the resistance according to an ordinal scale. The limited reliability of the measurement and the impossibility to discriminate between the underlying neural (stretch reflex) and non-neural (i.e. muscle mechanics) contributions have been the motivation to develop methods describing resistance joint torque quantitatively. The aim of this preliminary study is to develop a forward neuromusculoskeletal model consisting of the explicit musculotendon, muscle spindle, and motoneuron pool, which can simulate the passive isokinetic ankle dorsiflexion test of spasticity

Material and methods
Results and discussions
Lance J
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.