Abstract
The ionic environment of body fluids influences nervous functions for maintaining homeostasis in organisms and ensures normal perceptual abilities and reflex activities. Neural reflex activities, such as limb movements, are closely associated with potassium ions (K+). In this study, we developed artificial synaptic devices based on ion concentration–adjustable gels for emulating various synaptic plasticities under different K+ concentrations in body fluids. In addition to performing essential synaptic functions, potential applications in information processing and associative learning using short- and long-term plasticity realized using ion concentration–adjustable gels are presented. Artificial synaptic devices can be used for constructing an artificial neural pathway that controls artificial muscle reflex activities and can be used for image pattern recognition. All tests show a strong relationship with ion homeostasis. These devices could be applied to neuromorphic robots and human-machine interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.