Abstract
A neurofuzzy scheme has been designed to carry out on-line identification, with the aim of being used in an adaptive–predictive dynamic matrix control (DMC) of unconstrained nonlinear systems represented by a transfer function with varying parameters. This scheme supplies to the DMC controller the linear model and the nonlinear output predictions at each sample instant, and is composed of two blocks. The first one makes use of a fuzzy partition of the external variable universe of discourse, which smoothly commutes between several linear models. In the second block, a recurrent linear neuron with interpretable weights performs the identification of the models by means of supervised learning. The resulting identifier has several main advantages: interpretability, learning speed, and robustness against catastrophic forgetting. The proposed controller has been tested both on simulation and on a real laboratory plant, showing a good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.