Abstract

River flow forecasting is an essential procedure that is necessary for proper reservoir operation. Accurate forecasting results in good control of water availability, refined operation of reservoirs and improved hydropower generation. Therefore, it becomes crucial to develop forecasting models for river inflow. Several approaches have been proposed over the past few years based on stochastic modeling or artificial intelligence (AI) techniques. In this article, an adaptive neuro-fuzzy inference system (ANFIS) model is proposed to forecast the inflow for the Nile River at Aswan High Dam (AHD) on monthly basis. A major advantage of the fuzzy system is its ability to deal with imprecision and vagueness in inflow database. The ANFIS model divides the input space into fuzzy sub-spaces and maps the output using a set of linear functions. A historical database of monthly inflows at AHD recorded over the past 130 years is used to train the ANFIS model and test its performance. The performance of the ANFIS model is compared to a recently developed artificial neural networks (ANN) model. The results show that the ANFIS model was capable of providing higher inflow forecasting accuracy specially at extreme inflow events compared with that of the ANN model. It is concluded that the ANFIS model can be quite beneficial in water management of Lake Nasser reservoir at AHD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call