Abstract

In this paper, a new approach for sensor and actuator fault detection and estimation in unknown nonlinear systems is proposed. Model-free structure and no a priori knowledge about the faults are two main properties of the proposed method that make it a viable candidate for real-time applications. First, a neuro-fuzzy technique is used to obtain a nominal models of the system based on input-output data in normal system operation. Actuator and sensor faults are then estimated such that the error between the output of the model and the actual output is minimized. The gradient descent method is used to update the fault estimated values. The estimated values are subsequently used for fault accommodation. Simulation results for a two link planar robot manipulator are presented to demonstrate the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.