Abstract
This paper presents a neurodynamic optimization approach to robust pole assignment for synthesis of piecewise linear control systems via state feedback. The robust pole assignment is formulated as a pseudoconvex optimization problem with linear equality constraints where a robustness measure is considered as the objective function. The robustness is achieved by means of minimizing the spectral condition number of the closed-loop eigensystem. Two recurrent neural networks with guaranteed global convergence are applied for solving the optimization problem in real time. Simulation results are included to substantiate the effectiveness and demonstrate the characteristics of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.