Abstract

This paper develops a neurodynamic model for distributed nonconvex-constrained optimization. In the distributed constrained optimization model, the objective function and inequality constraints do not need to be convex, and equality constraints do not need to be affine. A Hestenes–Powell augmented Lagrangian function for handling the nonconvexity is established, and a neurodynamic system is developed based on this. It is proved that it is stable at a local optimal solution of the optimization model. Two illustrative examples are provided to evaluate the enhanced stability and optimality of the developed neurodynamic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.