Abstract

This paper presents a new neurodynamic approach for solving the constrained pseudoconvex optimization problem based on more general assumptions. The proposed neural network is equipped with a hard comparator function and a piecewise linear function, which make the state solution not only stay in the feasible region, but also converge to an optimal solution of the constrained pseudoconvex optimization problem. Compared with other related existing conclusions, the neurodynamic approach here enjoys global convergence and lower dimension of the solution space. Moreover, the neurodynamic approach does not depend on some additional assumptions, such as the feasible region is bounded, the objective function is lower bounded over the feasible region or the objective function is coercive. Finally, both numerical illustrations and simulation results in support vector regression problem show the well performance and the viability of the proposed neurodynamic approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.