Abstract
Simultaneous wireless information and power transfer (SWIPT) systems using energy from RF signals can effectively solve the energy shortage of wireless devices. However, the existing SWIPT optimization methods using numerical algorithms are difficult to solve the non-convex problem and to adapt to the dynamic communication circumstances. In this paper, a duplex neurodynamic optimization method is used to address the SWIPT system’s power partitioning issue. The information rate maximization problem of the SWIPT system is framed as a biconvex problem. A duplex recurrent neural network is used to concurrently execute local search and update the initial state of the neural network by a particle swarm optimization method to get the global optimum. The experimental results demonstrate that the duplex neurodynamic-based SWIPT system maximizes information rate while satisfying the minimal harvesting energy requirement in a variety of channel states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.