Abstract

The current article suggests that deterministic chaos self-organized in cortical dynamics could be responsible for the generation of spontaneous action sequences. Recently, various psychological observations have suggested that humans and primates can learn to extract statistical structures hidden in perceptual sequences experienced during active environmental interactions. Although it has been suggested that such statistical structures involve chunking or compositional primitives, their neuronal implementations in brains have not yet been clarified. Therefore, to reconstruct the phenomena, synthetic neuro-robotics experiments were conducted by using a neural network model, which is characterized by a generative model with intentional states and its multiple timescales dynamics. The experimental results showed that the robot successfully learned to imitate tutored behavioral sequence patterns by extracting the underlying transition probability among primitive actions. An analysis revealed that a set of primitive action patterns was embedded in the fast dynamics part, and the chaotic dynamics of spontaneously sequencing these action primitive patterns was structured in the slow dynamics part, provided that the timescale was adequately set for each part. It was also shown that self-organization of this type of functional hierarchy ensured robust action generation by the robot in its interactions with a noisy environment. This article discusses the correspondence of the synthetic experiments with the known hierarchy of the prefrontal cortex, the supplementary motor area, and the primary motor cortex for action generation. We speculate that deterministic dynamical structures organized in the prefrontal cortex could be essential because they can account for the generation of both intentional behaviors of fixed action sequences and spontaneous behaviors of pseudo-stochastic action sequences by the same mechanism.

Highlights

  • Our everyday actions are full of spontaneity

  • The model features learning of a mapping from intentional states to action sequences based on multiple timescales dynamics characteristics

  • The experimental results suggest that deterministic chaos self-organized in the slower timescale part of the network dynamics is responsible for generating spontaneous transitions among primitive actions by reflecting the extracted statistical structures

Read more

Summary

Introduction

Imagine that a man makes a cup of instant coffee every morning After he pours hot water into his mug, which is already filled with a spoonful of coffee crystals, he may either add sugar first and add milk, or add milk first and add sugar. Sometimes he may even forget about adding sugar and notice it later when he first tastes the cup of coffee. Some parts of these action sequences are definite, but other parts are varied because we see spontaneity in the action generation. The current article presents a model prediction for the underlying neural mechanism

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.