Abstract
In this study, an adaptive neuro-observer-based optimal control (ANOPC) policy is introduced for unknown nonaffine nonlinear systems with control input constraints. Hamilton–Jacobi–Bellman (HJB) framework is employed to minimize a non-quadratic cost function corresponding to the constrained control input. ANOPC consists of both analytical and algebraic parts. In the analytical part, first, an observer-based neural network (NN) approximates uncertain system dynamics, and then another NN structure solves the HJB equation. In the algebraic part, the optimal control input that does not exceed the saturation bounds is generated. The weights of two NNs associated with observer and controller are simultaneously updated in an online manner. The ultimately uniformly boundedness (UUB) of all signals of the whole closed-loop system is ensured through Lyapunov’s direct method. Finally, two numerical examples are provided to confirm the effectiveness of the proposed control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.