Abstract

Detecting the denial of service attacks that solely target the router is a maximum security imperative in deploying IPv6 networks. The state-of-the-art Denial of Service detection methods aim at leveraging the advantages of flow statistical features and machine learning techniques. However, the detection performance is highly affected by the quality of the feature selector and the reliability of datasets of IPv6 flow information. This paper proposes a new neuro-fuzzy inference system to tackle the problem of classifying the packets in IPv6 networks in crucial situation of small-supervised training dataset. The proposed system is capable of classifying the IPv6 router alert option packets into denial of service and normal by utilizing the neuro-fuzzy strengths to boost the classification accuracy. A mathematical analysis from the fuzzy sets theory perspective is provided to express performance benefit of the proposed system. An empirical performance test is conducted on comprehensive dataset of IPv6 packets produced in a supervised environment. The result shows that the proposed system overcomes robustly some state-of-the-art systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.