Abstract

This work presents a hybrid soft-computing methodology approach for intelligent maximum power point tracking (MPPT) techniques of a photovoltaic (PV) system under any expected operating conditions using artificial neural network-fuzzy (neuro-fuzzy). The proposed technique predicts the calculation of the duty cycle ensuring optimal power transfer between the PV generator and the load. The neuro-fuzzy hybrid method combines artificial neural network (ANN) to direct the controller to the region where the MPP is located with its reference voltage estimator and its block of neural order. After that, the fuzzy logic controller (FLC) with rule inference begins to establish the photovoltaic solar system at the MPP. The obtained simulation results using MATLAB/simulink software for the proposed approach compared to ANN and the perturb and observe (P&O), proved that neuro-fuzzy approach fulfilled to extract the optimum power with pertinence, efficiency and precision

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.