Abstract
A mixed Neural-Finite Element Method (FEM) strategy is proposed for the evaluation of magnetic permeability for the equivalent homogenized material of a magnetic shielding mortar containing ferromagnetic particles. The approach is based on a two phases procedure: in the first phase thousands of FEM meshes representing the same sample geometry, with different inclusions distribution, are used to compute the magnetic field; the data so achieved are then used to fed a feedforward neural network, which is able to extract the relationship, among the quantity of magnetic material used (input), its magnetic permeability (input) and the equivalent material characteristic (output). These two phases are unsupervised as in a machine learning approach in such a way that the estimation can be refined automatically. The obtained results are validated by comparison with experimental data available from literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.