Abstract

The graph classification problem consists, given a weighted graph and a partial node labeling, in extending the labels to all nodes. In many real-world context, such as Gene Function Prediction, the partial labeling is unbalanced: positive labels are much less than negatives. In this paper we present a new neural algorithm for predicting labels in presence of label imbalance. This algorithm is based on a family of Hopfield networks, described by 2 continuous parameters and 1 discrete parameter, and it consists of two main steps: 1) the network parameters are learnt through a cost-sensitive optimization procedure based on local search; 2) a suitable Hopfield network restricted to unlabeled nodes is considered and simulated. The reached equilibrium point induces the classification of unlabeled nodes. An experimental analysis on real-world unbalanced data in the context of genome-wide prediction of gene functions show the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.