Abstract
Inspired by the self/nonself discrimination theory of the natural immune system, the negative selection algorithm (NSA) is an emerging computational intelligence method. Generally, detectors in the original NSA are first generated in a random manner. However, those detectors matching the self samples are eliminated thereafter. The remaining detectors can therefore be employed to detect any anomaly. Unfortunately, conventional NSA detectors are not adaptive for dealing with time-varying circumstances. In the present paper, a novel neural networks-based NSA is proposed. The principle and structure of this NSA are discussed, and its training algorithm is derived. Taking advantage of efficient neural networks training, it has the distinguishing capability of adaptation, which is well suited for handling dynamical problems. A fault diagnosis scheme using the new NSA is also introduced. Two illustrative simulation examples of anomaly detection in chaotic time series and inner raceway fault diagnosis of motor bearings demonstrate the efficiency of the proposed neural networks-based NSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.