Abstract
AbstractCourt rulings are among the most important documents in all legal systems. This article describes a study in which natural language processing is used for the automatic characterization of Spanish judgments that deal with the physical custody (joint or individual) of minors. The model was trained to identify a set of elements: the type of custody requested by the plaintiff, the type of custody decided on by the court, and eight of the most commonly used arguments in this type of judgment. Two jurists independently annotated more than 3000 judgments, which were used to train a model based on transformers. The main difficulties encountered in this task were the complexity of the judicial language and the need to work with appellate court rulings that have a more complicated structure than decisions at first instance. For the complete court rulings, the F1 score of the inter-annotator agreement ranged from 0.60 to 0.86 and the Kappa index from 0.33 to 0.73. The F1 score of the agreement between the model and the annotators ranged from 0.66 to 0.93 and the Kappa index from 0.57 to 0.80. These results in which the model performance exceeds even the inter-annotator agreement show the high ability of transformers to identify abstract entities in legal texts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.