Abstract

A parallel algorithm based on a neural network model for solving clique vertex-partition problems in arbitrary non-directed graphs is presented in this paper. A clique of a graph G = (V, E) with a set of vertices V and a set of edges E is a complete subgraph of G where any pair of vertices is connected with an edge. A clique vertex-partition problem of a graph G is to partition every vertex in V into a set of disjointed cliques of G. The clique vertex-partition problem with the minimum number of cliques in an arbitrary graph is known to be NP-complete. The algorithm requires nm processing elements for the n vertex m partition problem. A total of 10 different problems with 8 vertex to 300 vertex graphs were examined where the algorithm found a solution in nearly constant time. The circuit diagram of the neural network model is also proposed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.