Abstract
In order to probe into the self-organizing emergence of simple cell orientation selectivity, we tried to construct a neural network model that consists of LGN neurons and simple cells in visual cortex and obeys the Hebbian learning rule. We investigated the neural coding and representation of simple cells to a natural image by means of this model. The results show that the structures of their receptive fields are determined by the preferred orientation selectivity of simple cells. However, they are also decided by the emergence of self-organization in the unsupervision learning process. This kind of orientation selectivity results from dynamic self-organization based on the interactions between LGN and cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.