Abstract

Machine learning has recently been applied and deployed at several light source facilities in the domain of accelerator physics. Here, an approach based on machine learning to produce a fast-executing model is introduced that predicts the polarization and energy of the radiated light produced at an insertion device. This paper demonstrates how a machine learning model can be trained on simulated data and later calibrated to a smaller, limited measured data set, a technique referred to as transfer learning. This result will enable users to efficiently determine the insertion device settings for achieving arbitrary beam characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.