Abstract

A hybrid flow shop (HFS) is a generalized flow shop with multiple machines in some stages. HFS is fairly common in flexible manufacturing and in process industry. Because manufacturing systems often operate in a stochastic and dynamic environment, dynamic hybrid flow shop scheduling is frequently encountered in practice. This paper proposes a neural network model and algorithm to solve the dynamic hybrid flow shop scheduling problem. In order to obtain training examples for the neural network, we first study, through simulation, the performance of some dispatching rules that have demonstrated effectiveness in the previous related research. The results are then transformed into training examples. The training process is optimized by the delta-bar-delta (DBD) method that can speed up training convergence. The most commonly used dispatching rules are used as benchmarks. Simulation results show that the performance of the neural network approach is much better than that of the traditional dispatching rules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.