Abstract
Prediction of ground reaction force (GRF) magnitudes during running-based sports has several important applications, including optimal load prescription and injury prevention in athletes. Existing methods typically require information from multiple body-worn sensors, limiting their ecological validity, or aim to estimate discrete force parameters, limiting their ability to assess overall biomechanical load. This paper presents a neural network method to predict GRF time series from a single, commonly used, trunk-mounted accelerometer. The presented method uses a principal component analysis and multilayer perceptron (MLP) to obtain predictions. Time-series r2 coefficients with test data averaged around 0.9 for each impact, comparing favourably with alternative approaches which require additional sensors. For the impact peak, r2 was 0.74 across activities, comparing favourably with correlation analysis approaches. Several modifications, such as subject-specific training of the MLP, may help to improve results further, but the presented method can accurately predict GRF from trunk accelerometry data without requiring additional information. Results demonstrate the scope of machine learning to exploit common wearable technologies to estimate GRF in sport-specific environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.