Abstract

Human decision-making shows systematic simplifications and deviations from the tenets of rationality (‘heuristics’) that may lead to suboptimal decisional outcomes (‘cognitive biases’). There are currently three prevailing theoretical perspectives on the origin of heuristics and cognitive biases: a cognitive-psychological, an ecological and an evolutionary perspective. However, these perspectives are mainly descriptive and none of them provides an overall explanatory framework for the underlying mechanisms of cognitive biases. To enhance our understanding of cognitive heuristics and biases we propose a neural network framework for cognitive biases, which explains why our brain systematically tends to default to heuristic (‘Type 1’) decision making. We argue that many cognitive biases arise from intrinsic brain mechanisms that are fundamental for the working of biological neural networks. To substantiate our viewpoint, we discern and explain four basic neural network principles: (1) Association, (2) Compatibility, (3) Retainment, and (4) Focus. These principles are inherent to (all) neural networks which were originally optimized to perform concrete biological, perceptual, and motor functions. They form the basis for our inclinations to associate and combine (unrelated) information, to prioritize information that is compatible with our present state (such as knowledge, opinions, and expectations), to retain given information that sometimes could better be ignored, and to focus on dominant information while ignoring relevant information that is not directly activated. The supposed mechanisms are complementary and not mutually exclusive. For different cognitive biases they may all contribute in varying degrees to distortion of information. The present viewpoint not only complements the earlier three viewpoints, but also provides a unifying and binding framework for many cognitive bias phenomena.

Highlights

  • In daily life, we constantly make judgments and decisions without knowing their outcome

  • To enhance our understanding of cognitive heuristics and biases, we propose a neural network perspective that explains why our brain systematically tends to default to heuristic decision making

  • Our tendency to use heuristics that seem to violate the tenets of rationality generally leads to fairly acceptable outcomes with little experienced costs, it can sometimes result in suboptimal decisions

Read more

Summary

A Neural Network Framework for Cognitive Bias

Specialty section: This article was submitted to Cognitive Science, a section of the journal Frontiers in Psychology. We discern and explain four basic neural network principles: (1) Association, (2) Compatibility, (3) Retainment, and (4) Focus These principles are inherent to (all) neural networks which were originally optimized to perform concrete biological, perceptual, and motor functions. They form the basis for our inclinations to associate and combine (unrelated) information, to prioritize information that is compatible with our present state (such as knowledge, opinions, and expectations), to retain given information that sometimes could better be ignored, and to focus on dominant information while ignoring relevant information that is not directly activated.

INTRODUCTION
A NEURAL NETWORK FRAMEWORK ON COGNITIVE BIASES
Findings
DISCUSSION AND CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.