Abstract

Demand response management (DRM) plays a crucial role in the prospective development of smart grids. The precise estimation of electricity demand for individual houses is vital for optimizing the operation and planning of the power system. Accurate forecasting of the required components holds significance as it can substantially impact the final cost, mitigate risks, and support informed decision-making. In this paper, a forecasting approach employing neural networks for smart grid demand-side management is proposed. The study explores various enhanced artificial neural network (ANN) architectures for forecasting smart grid consumption. The performance of the ANN approach in predicting energy demands is evaluated through a comparison with three statistical models: a time series model, an auto-regressive model, and a hybrid model. Experimental results demonstrate the ability of the proposed neural network framework to deliver accurate and reliable energy demand forecasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call