Abstract

A neural network is proposed for solving a convex quadratic bilevel programming problem. Based on Lyapunov and LaSalle theories, we prove strictly an important theoretical result that, for an arbitrary initial point, the trajectory of the proposed network does converge to the equilibrium, which corresponds to the optimal solution of a convex quadratic bilevel programming problem. Numerical simulation results show that the proposed neural network is feasible and efficient for a convex quadratic bilevel programming problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.