Abstract

Several critical issues associated with the processing of olfactory stimuli in animals (but focusing on insects) are discussed with a view to designing a neural network which can process olfactory stimuli. This leads to the construction of a neural network that can learn and identify the quality (direction cosines) of an input vector or extract information from a sequence of correlated input vectors, where the latter corresponds to sampling a time varying olfactory stimulus (or other generically similar pattern recognition problems). The network is constructed around a discrete time content-addressable memory (CAM) module which basically satisfies the Hopfield equations with the addition of a unit time delay feedback. This modification improves the convergence properties of the network and is used to control a switch which activates the learning or template formation process when the input is "unknown". The network dynamics are embedded within a sniff cycle which includes a larger time delay (i.e. an integer ts greater than 1) that is also used to control the template formation switch. In addition, this time delay is used to modify the input into the CAM module so that the more dominant of two mingling odors or an odor increasing against a background of odors is more readily identified. The performance of the network is evaluated using Monte Carlo simulations and numerical results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.