Abstract
With the spread of diabetes mellitus, diabetic retinopathy (DR) is becoming a major public health problem (especially in developing countries). The long-term complications resulting from DR have a significant impact on patients. Early diagnosis and subsequent treatment can reduce the damage to health. Predictive analytics can be based on the analysis of human retinal images using convolutional neural networks. In this paper, the research focuses on the development of an efficient method for DR detection based on the EfficientNet convolutional neural network, self-learning technology and data augmentation operations. As a result of the experiments, a neural network classifier based on convolutional neural networks is developed, recommendations for data augmentation operations are given. Experiments were performed on the public dataset and showed that it is possible to achieve the proportion of correctly classified objects equal to 97.14 % on the test set from the public dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.