Abstract

A software routine to reconstruct individual spike trains from multi-neuron, single-channel extracellular recordings was designed. Using a neural network algorithm that automatically clusters and sorts the spikes, the only user input needed is the threshold level for spike detection and the number of unit types present in the recording. Adaptive features are included in the algorithm to allow for tracking of spike trains during periods of amplitude variation and also to identify noise spikes. The routine will operate on-line during extracellular studies of the cochlear nucleus in cats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.