Abstract

This paper proposes a neural network approach to efficiently solve nonlinear convex programs with the second-order cone constraints. The neural network model is designed by the generalized Fischer–Burmeister function associated with second-order cone. We study the existence and convergence of the trajectory for the considered neural network. Moreover, we also show stability properties for the considered neural network, including the Lyapunov stability, the asymptotic stability and the exponential stability. Illustrative examples give a further demonstration for the effectiveness of the proposed neural network. Numerical performance based on the parameter being perturbed and numerical comparison with other neural network models are also provided. In overall, our model performs better than two comparative methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.