Abstract

Traditional reliability approaches introduce relevant costs to achieve unconditional correctness during data processing. However, many application environments are inherently tolerant to a certain degree of inexactness or inaccuracy. In this article, we focus on the practical scenario of image processing in space, a domain where faults are a threat, while the applications are inherently tolerant to a certain degree of errors. We first introduce the concept of usability of the processed image to relax the traditional requirement of unconditional correctness, and to limit the computational overheads related to reliability. We then introduce our new flexible and lightweight fault management methodology for inaccurate application environments. A key novelty of our scheme is the utilization of neural networks to reduce the costs associated with the occurrence and the detection of faults. Experiments on two aerospace image processing case studies show overall time savings of 14.89 and 34.72 percent for the two applications, respectively, as compared with the baseline classical Duplication with Comparison scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.