Abstract
We propose a system for conducting an auction over locations in a continuous space. It enables participants to express their preferences over possible choices of location in the space, selecting the location that maximizes the total utility of all agents. We prevent agents from tricking the system into selecting a location that improves their individual utility at the expense of others by using a pricing rule that gives agents no incentive to misreport their true preferences. The system queries participants for their utility in many random locations, then trains a neural network to approximate the preference function of each participant. The parameters of these neural network models are transmitted and processed by the auction mechanism, which composes these into differentiable models that are optimized through gradient ascent to compute the final chosen location and charged prices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.