Abstract
Most existing 2D object recognition algorithms are not perspective (or projective) invariant, and hence are not suitable for many real-world applications. By contrast, one of the primary goals of this research is to develop a flat object matching system that can identify and localise an object, even when seen from different viewpoints in 3D space. In addition, we also strive to achieve good scale invariance and robustness against partial occlusion as in any practical 2D object recognition system. The proposed system uses multi-view model representations and objects are recognised by self-organised dynamic link matching. The merit of this approach is that it offers a compact framework for concurrent assessments of multiple match hypotheses by promoting competitions and/or co-operations among several local mappings of model and test image feature correspondences. Our experiments show that the system is very successful in recognising object to perspective distortion, even in rather cluttered scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.