Abstract

This study investigated the application of a recurrent neural network for optimising pharmacological treatment for depression. A clinical dataset of 458 participants from specialist and community psychiatric services in Australia, New Zealand and Japan were extracted from an existing custom-built, web-based tool called Psynary . This data, which included baseline and self-completed reviews, was used to train and refine a novel algorithm which was a fully connected network feature extractor and long short-term memory algorithm was firstly trained in isolation and then integrated and annealed using slow learning rates due to the low dimensionality of the data. The accuracy of predicting depression remission before processing patient review data was 49.8%. After processing only 2 reviews, the accuracy was 76.5%. When considering a change in medication, the precision of changing medications was 97.4% and the recall was 71.4% . The medications with predicted best results were antipsychotics (88%) and selective serotonin reuptake inhibitors (87.9%). This is the first study that has created an all-in-one algorithm for optimising treatments for all subtypes of depression. Reducing treatment optimisation time for patients suffering with depression may lead to earlier remission and hence reduce the high levels of disability associated with the condition. Furthermore, in a setting where mental health conditions are increasing strain on mental health services, the utilisation of web-based tools for remote monitoring and machine/deep learning algorithms may assist clinicians in both specialist and primary care in extending specialist mental healthcare to a larger patient community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call