Abstract

A convolutional neural network-based classifier is elaborated to retrace the initial orientation of deformed nucleus-nucleus collisions by integrating multiple typical experimental observables. The isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model is employed to generate data for random orientations of ultra-central uranium-uranium collisions at Ebeam=1GeV/nucleon. Statistically, the data-driven polarization scheme is essentially accomplished via the classifier, whose distinct categories filter out specific orientation-biased collision events. This will advance the deformed nucleus-based studies on nuclear symmetry energy, neutron skin, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.