Abstract

In this paper, we present and evaluate a neural network model for solving a typical personnel-scheduling problem, i.e. an airport ground staff rostering problem. Personnel scheduling problems are widely found in servicing and manufacturing industries. The inherent complexity of personnel scheduling problems has normally resulted in the development of integer programming-based models and various heuristic solution procedures. The neural network approach has been admitted as a promising alternative to solving a variety of combinatorial optimization problems. While few works relate neural network to applications of personnel scheduling problems, there is great theoretical and practical value in exploring the potential of this area. In this paper, we introduce a neural network model following a relatively new modeling approach to solve a real rostering case. We show how to convert a mixed integer programming formulation to a neural network model. We also provide the experiment results comparing the neural network method with three popular heuristics, i.e. simulated annealing, Tabu search and genetic algorithm. The computational study reveals some potential of neural networks in solving personnel scheduling problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.