Abstract

BackgroundThe ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells.MethodsHippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates.ResultsWhen seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons.ConclusionsWe conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.

Highlights

  • The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro

  • Culture of rat hippocampal cells on neural extracellular matrix-coated surfaces To evaluate the effect of nECM on primary hippocampal cultures as compared to more traditional cell substrates as PLL, E18 rat embryo hippocampi were extracted, dissected and cells seeded either on nECM- or PLL-coated coverslips

  • We observed the reverse effect (p < 0.01) on glial lineage-committed cells (GFAP+, Figure 2C), so it can be said that nECM promoted neuronal differentiation while PLL favoured glial commitment

Read more

Summary

Introduction

The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. We expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. The extracellular matrix (ECM) is responsible for the promotion of cell adhesion, proliferation and differentiation, and maintenance of tissue homeostasis throughout the whole organism. PNNs are mainly composed of proteoglycans, collagen, laminin, fibronectin and neuropeptides. The latter seem to be involved in the regulation of neuronal plasticity [6] as well as in neuroprotection [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.