Abstract
The neural mechanism of memory has a very close relation with the problem of representation in artificial intelligence. In this paper a computational model was proposed to simulate the network of neurons in brain and how they process information. The model refers to morphological and electrophysiological characteristics of neural information processing, and is based on the assumption that neurons encode their firing sequence. The network structure, functions for neural encoding at different stages, the representation of stimuli in memory, and an algorithm to form a memory were presented. It also analyzed the stability and recall rate for learning and the capacity of memory. Because neural dynamic processes, one succeeding another, achieve a neuron-level and coherent form by which information is represented and processed, it may facilitate examination of various branches of Artificial Intelligence (AI), such as inference, problem solving, pattern recognition, natural language processing and learning. The processes of cognitive manipulation occurring in intelligent behavior have a consistent representation while all being modeled from the perspective of computational neuroscience. Thus, the dynamics of neurons make it possible to explain the inner mechanisms of different intelligent behaviors by a unified model of cognitive architecture at a micro-level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Cognitive Informatics and Natural Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.