Abstract
Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp.
Highlights
Object-oriented reaching and grasping in natural settings, a key element of human-robot cooperation, continues to be a challenge for autonomous robots (Herzog et al, 2012)
We aim to show how transitions between different phases of behavior emerge autonomously from the space time continuous dynamical systems
We inspect the three components of scene representation, shape classification, and movement generation, one by one, these componets are tightly coupled in the overall neural architecture and evolve in parallel
Summary
Object-oriented reaching and grasping in natural settings, a key element of human-robot cooperation, continues to be a challenge for autonomous robots (Herzog et al, 2012). Humans reach and grasp objects that they see for the first time or that are partially occluded. They may grasp an object after closing their eyes. Anytime during movement preparation or execution, humans may update the motor plan when the object shifts or rotates (Desmurget and Grafton, 2000). This performance entails, in humans, a close coupling among perceptual processes including gaze control, shift of attention, segmentation, recognition, and pose estimation of the object, as well as between perception and motor processes including initiating, coordinating, and terminating reach and grasp movements
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.