Abstract
Time and space are primary dimensions of human experience. Separate lines of investigation have identified neural correlates of time and space, yet little is known about how these representations converge during self-guided experience. Here, 10 subjects with intracranially implanted microelectrodes play a timed, virtual navigation game featuring object search and retrieval tasks separated by fixed delays. Time cells and place cells activate in parallel during timed navigation intervals, whereas a separate time cell sequence spans inter-task delays. The prevalence, firing rates, and behavioral coding strengths of time cells and place cells are indistinguishable-yet time cells selectively remap between search and retrieval tasks, while place cell responses remain stable. Thus, the brain can represent time and space as overlapping but dissociable dimensions. Time cells and place cells may constitute a biological basis for the cognitive map of spatiotemporal context onto which memories are written.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.