Abstract

The McGurk effect is a compelling illusion in which humans perceive mismatched audiovisual speech as a completely different syllable. However, some normal individuals do not experience the illusion, reporting that the stimulus sounds the same with or without visual input. Converging evidence suggests that the left superior temporal sulcus (STS) is critical for audiovisual integration during speech perception. We used blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) to measure brain activity as McGurk perceivers and non-perceivers were presented with congruent audiovisual syllables, McGurk audiovisual syllables, and non-McGurk incongruent syllables. The inferior frontal gyrus showed an effect of stimulus condition (greater responses for incongruent stimuli) but not susceptibility group, while the left auditory cortex showed an effect of susceptibility group (greater response in susceptible individuals) but not stimulus condition. Only one brain region, the left STS, showed a significant effect of both susceptibility and stimulus condition. The amplitude of the response in the left STS was significantly correlated with the likelihood of perceiving the McGurk effect: a weak STS response meant that a subject was less likely to perceive the McGurk effect, while a strong response meant that a subject was more likely to perceive it. These results suggest that the left STS is a key locus for interindividual differences in speech perception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.