Abstract

Tasks that require the synchronization of perception and action are incredibly hard and pose a fundamental challenge to the fields of machine learning and computer vision. One important example of such a task is the problem of performing visual recognition through a sequence of controllable fixations; this requires jointly deciding what inference to perform from fixations and where to perform these fixations. While these two problems are challenging when addressed separately, they become even more formidable if solved jointly. Recently, a restricted Boltzmann machine (RBM) model was proposed that could learn meaningful fixation policies and achieve good recognition performance. In this paper, we propose an alternative approach based on a feed-forward, auto-regressive architecture, which permits exact calculation of training gradients (given the fixation sequence), unlike for the RBM model. On a problem of facial expression recognition, we demonstrate the improvement gained by this alternative approach. Additionally, we investigate several variations of the model in order to shed some light on successful strategies for fixation-based recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.