Abstract

BackgroundThe purpose of this study was to investigate the mechanism of action of muscone on breast cancer using network pharmacology and molecular docking techniques.MethodsTargets of muscone acid action were collected using the PubChem and SwissTargetPrediction databases. Relevant target sets of breast cancer were collected using the GeneCards database, and the intersection of the drug-disease targets was used as the potential target of muscone action in breast cancer. The STRING database was used to construct a target protein-protein interaction (PPI) network, and the data were imported into Cytoscape 3.7.1 for topological network analysis to obtain the core target genes of muscone in breast cancer. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. The correlation of core gene expression with breast cancer survival was analyzed using the online Kaplan-Meier plotter tool. Molecular docking of core target genes to muscone was performed using AutoDock Vina.ResultsA total of 18 common targets of muscone and breast cancer were obtained through target intersection. The PPI map and topology analysis revealed that androgen receptor (AR), progesterone receptor (PGR), matrix metalloproteinase 9 (MMP9), prostaglandin-endoperoxide synthase 2 (PTGS2), heat shock protein 90 alpha family class A member 1 (HSP90AA1), mitogen-activated protein kinase 14 (MAPK14), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) might be the key targets of muscone acting on breast cancer. The GO enrichment analysis identified 60 terms, while the KEGG pathway enrichment analysis identified 7 signaling pathways, including steroid hormone biosynthesis, ovarian steroidogenesis, cancer pathways, and the tumor necrosis factor (TNF) signaling pathway. The results of survival stage analysis showed that the binding activity between muskone and key targets was better than other targets. The molecular docking results showed that muscone had the highest docking affinity for the key target CYP19A1 gene at −7.0 kJ/moL.ConclusionsMuscone might exert anti–breast cancer effects through cancer pathways, ovarian steroidogenesis, and TNF signaling pathways and has the potential to be developed as a clinical agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call