Abstract

Operators of integrated wireless systems need to have knowledge of the resource availability in their different access networks to perform efficient admission control and maintain good quality of experience to users. Network availability depends on the access technology and the service types. Resource availability in a WLAN is complex to gather when UDP and TCP services co-exist. Previous study on IEEE802.11a/b derived the achievable throughput under the assumption of inelastic and uniformly distributed traffic. Further study investigated TCP connections and derived a model to calculate the effective transmission rate of packets under the assumption of saturated traffic flows. The assumptions are too stringent; therefore, we developed a model for evaluating WLAN resource availability that tries to narrow the gap to more realistic scenarios. It provides an indication of WLAN resource availability for admitting UDP/TCP requests. This article presents the assumptions, the mathematical formulations, and the effectiveness of our model.

Highlights

  • Operators that control integrated wireless systems with multiple radio access technologies (RATs) need to have a very good knowledge of the current context of each radio access network (RAN) to perform efficient call admission control and at the same time maintain a good quality of experience to their users

  • These results show that the WLAN network is capable of providing acceptable quality of service when 11 premium voice over IP (VoIP) users are in the network

  • The model has in mind the characteristics of the access technology and the prospective service requests of a heterogeneous wireless environment

Read more

Summary

Introduction

Operators that control integrated wireless systems with multiple radio access technologies (RATs) need to have a very good knowledge of the current context of each radio access network (RAN) to perform efficient call admission control and at the same time maintain a good quality of experience to their users. If the requested and the existing service types are all TCP-based, the analysis method proposed in [3] will be implemented to calculate the effective transmission rate (excluding traffic and protocol overheads) of each packet generated by the requested connection and the existing users. For the IEEE802.11b-based WLAN, as an example, these two virtual “long-live” TCP sessions can have a fair access to the channel whose effective packet transmission rate is about 4,500 kbps.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.