Abstract

Moutan Cortex charcoal has been used to ameliorate blood heat symptoms and treat pathologic hemorrhage down the ages. Although well known as an agent with the effect of astringency and hemostasis, its active ingredients and action mechanism remain unclear. In the present study, molecular docking technology was employed to screen the potential hemostatic compounds in Moutan Cortex charcoal and their target proteins. Protein-protein-interaction (PPI) analysis was performed to explain the functions and enrichment pathways of the target proteins. The results showed that a total of 25 compounds were estimated as active constituents targeting multiple proteins related to hemostatic diseases, including 5 proteins (SERPINC1, FVIII, FX, FII and FXII) that were considered as the key targets. Then the drug-target (D-T) network was constructed to analyze the underlying hemostatic mechanism of Moutan Cortex charcoal, followed by a hierarchical cluster analysis (HCA) for compounds clustering, and a coagulation screening test for compound verification on their coagulation activities, with the results indicating that M15 (5-Tetradecenoic acid) and M31 (1-Monolinolein) might be the key compounds contributing to the hemostasis effect of Moutan Cortex charcoal by involving in the pathways related to complement, coagulation cascades and the platelet activation, particularly by activating FVIII, FX, FII and FXII and inhibiting SERPINC1. This study has demonstrated that Moutan Cortex charcoal may work as a hemostatic through the interaction between multiple-compounds and multiple-proteins, which provides the basis for further researches on the hemostasis mechanism of Moutan Cortex charcoal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call