Abstract

Low-dimensional oscillators are a valuable model for the neuronal activity of isolated neurons. When coupled, the self-sustained oscillations of individual free oscillators are replaced by a collective network dynamics. Here, dynamical features of such a network, consisting of three electronic implementations of the Hindmarsh-Rose mathematical model of bursting neurons, are compared to those of a biological neural motor system, specifically the pyloric CPG of the crustacean stomatogastric nervous system. We demonstrate that the network of electronic neurons exhibits realistic synchronized bursting behavior comparable to the biological system. Dynamical properties were analyzed by injecting sinusoidal currents into one of the oscillators. The temporal bursting structure of the electronic neurons in response to periodic stimulation is shown to bear a remarkable resemblance to that observed in the corresponding biological network. These findings provide strong evidence that coupled nonlinear oscillators realistically reproduce the network dynamics experimentally observed in assemblies of several neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call