Abstract

The objective of this network meta-analysis was to determine the efficacy of different mycotoxin binders (MTB) to reduce aflatoxin M1 (AFM1) in milk. A literature search was conducted to identify in vivo research papers from different databases. Inclusion criteria were in vivo, dairy cows, description of the MTB used, doses of MTB, aflatoxin inclusion in the diet, and concentration of AFM1 in milk. Twenty-eight papers with 131 data points were selected. Binders used in the studies were hydrated sodium calcium aluminosilicate (HSCAS), yeast cell wall (YCW), bentonite, and mixes of several MTB (MX). The response variables were AFM1 concentration, AFM1 reduction in milk, total AFM1 excreted in milk, and transfer of aflatoxin from feed to AFM1 in milk. Data were analyzed with CINeMA and GLIMMIX procedures with the WEIGHT statement of SAS (SAS Inst. Inc.). The AFM1 concentration in milk decreased for bentonite (0.3 µg/L ± 0.05; mean ± SE) and HSCAS (0.4 µg/L ± 0.12), and tended to decrease for MX (0.6 µg/L ± 0.13) but was similar for YCW (0.6 µg/L ± 0.12), compared with control (0.7 µg/L ± 0.12). The percentage reduction of AFM1 in milk was similar for all MTB and different from control with a range of reduction from 25% for YCW to 40% for bentonite. The excretion of AFM1 in milk was lower in YCW (5.3 µg/L ± 2.37), HSCAS (13.8 µg/L ± 3.31), and MX (17.1 µg/L ± 5.64), and not affected by bentonite (16.8 µg/L ± 3.33) compared with control (22.1 µg/L ± 5.33). The transfer of aflatoxin B1 from feed into AFM1 in milk was lowest in bentonite (0.6% ± 0.12), MX (1.04% ± 0.27), and HSCAS (1.04% ± 0.21), and not affected in YCW (1.4% ± 0.10), compared with control (1.7% ± 0.35). The meta-analysis results indicate that all MTB reduced the AFM1 transfer into milk, where bentonite had the highest capacity and YCW the lowest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call