Abstract

A network intrusion detection tool can identify and detect potential malicious activities or attacks by monitoring network traffic and system logs. The data within intrusion detection networks possesses characteristics that include a high degree of feature dimension and an unbalanced distribution across categories. Currently, the actual detection accuracy of some detection models is relatively low. To solve these problems, we propose a network intrusion detection model based on multi-head attention and BiLSTM (Bidirectional Long Short-Term Memory), which can introduce different attention weights for each vector in the feature vector that strengthen the relationship between some vectors and the detection attack type. The model also utilizes the advantage that BiLSTM can capture long-distance dependency relationships to obtain a higher detection accuracy. This model combined the advantages of the two models, adding a dropout layer between the two models to improve the detection accuracy while preventing training overfitting. Through experimental analysis, the network intrusion detection model that utilizes multi-head attention and BilSTM achieved an accuracy of 98.29%, 95.19%, and 99.08% on the KDDCUP99, NSLKDD, and CICIDS2017 datasets, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.