Abstract

Clustering is an important approach to identifying hotspots with broad applications, ranging from crime area analysis to transport prediction and urban planning. As an on-demand transport service, taxis play an important role in urban systems, and the pick-up and drop-off locations in taxi GPS trajectory data have been widely used to detect urban hotspots for various purposes. In this work, taxi drop-off events are represented as linear features in the context of the road network space. Based on such representation, instead of the most frequently used Euclidian distance, Jaccard distance is calculated to measure the similarity of road segments for cluster analysis, and further, a network distance and graph-partitioning-based clustering method is proposed for improving the accuracy of urban hotspot detection. A case study is conducted using taxi trajectory data collected from over 6500 taxis during one week, and the results indicate that the proposed method can identify urban hotspots more precisely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.