Abstract

Stochastic network calculus is an evolving theory for network performance guarantee analysis. Although many theoretical results of this theory have been developed, there still lack applicable examples to demonstrate how it may be used. This paper exemplifies applying stochastic network calculus to delay analysis of the IEEE 802.11 distributed coordination function (DCF). Analyzing and obtaining the stochastic characteristics of the single packet service time is the primary task. Then the stochastic behavior of the DCF is characterized by a time-domain server model, which describes the cumulative service time provided to an arrival flow using a probabilistic bound. Based on this server model, we obtain delay bounds for different arrival processes. In addition, the delay bounds also take buffer size into account. The analytical bounds are further discussed using numerical results. Through these, we present a stochastic network calculus approach to delay evaluation of the DCF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.