Abstract

Wire arc additive manufacturing (WAAM) offers a viable solution for fabricating large-scale metallic parts, which contain various forms of inclined thick-walled structure. Due to the variety of heat dissipation conditions at different positions, the inclined thick-walled structure is a major challenge in fabrication that may produce collapses and defects. However, there is a lack of effective sensing method for acquiring the forming appearance of individual beads in the structure. This paper proposes a novel approach for extracting individual bead profiles during the WAAM process. The approach utilizes a structured-laser sensor to capture the morphology of the surface before and after deposition, thereby enabling an accurate acquisition of the bead profile by integrating the laser stripes. Utilizing the proposed approach, the research investigated the forming mechanism of beads in inclined thick-walled components that were fabricated by various deposition parameters. The width of the overlapping area at the overhanging feature decreased as the layer number increased, while the height of the same area increased. The height of the overlapping area in each layer increased with an increase in deposition current and decreased when the deposition speed was increased. These phenomena suggest that the heat input is a major factor that influences the formation of the overhanging feature. Both the deposition current and deposition velocity influence heat input, and thereby have an effect in enhancing the geometrical accuracy of an overhanging feature. The experimental results indicate that the proposed approach facilitates morphology change investigation, providing a sufficient reference for optimizing deposition parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.